Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmacology and Experimental Therapeutics
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Design, Synthesis, and Analysis of a Polyethelene Glycol-Modified (PEGylated) Small Molecule Inhibitor of Integrin α4β1 with Improved Pharmaceutical Properties

Authors: Doreen Lepage; A. Chakraborty; L. L. Chen; Brian M. Dolinski; Alan Gill; Wen-Cherng Lee; Diane R Leone; +11 Authors

Design, Synthesis, and Analysis of a Polyethelene Glycol-Modified (PEGylated) Small Molecule Inhibitor of Integrin α4β1 with Improved Pharmaceutical Properties

Abstract

Integrin alpha4beta1 plays an important role in inflammatory processes by regulating the migration of leukocytes into inflamed tissues. Previously, we identified BIO5192 [2(S)-{[1-(3,5-dichloro-benzenesulfonyl)-pyrrolidine-2(S)-carbonyl]-amino}-4-[4-methyl-2(S)-(methyl-{2-[4-(3-o-tolyl-ureido)-phenyl]-acetyl}-amino)-pentanoylamino]-butyric acid], a highly selective and potent (K(D) of 9 pM) small molecule inhibitor of alpha4beta1. Although BIO5192 is efficacious in various animal models of inflammatory disease, high doses and daily treatment of the compound are needed to achieve a therapeutic effect because of its relatively short serum half-life. To address this issue, polyethylene glycol modification (PEGylation) was used as an approach to improve systemic exposure. BIO5192 was PEGylated by a targeted approach in which derivatizable amino groups were incorporated into the molecule. Two sites were identified that could be modified, and from these, five PEGylated compounds were synthesized and characterized. One compound, 2a-PEG (K(D) of 19 pM), was selected for in vivo studies. The pharmacokinetic and pharmacodynamic properties of 2a-PEG were dramatically improved relative to the unmodified compound. The PEGylated compound was efficacious in a rat model of experimental autoimmune encephalomyelitis at a 30-fold lower molar dose than the parent compound and required only a once-a-week dosing regimen compared with a daily treatment for BIO5192. Compound 2a-PEG was highly selective for alpha4beta1. These studies demonstrate the feasibility of PEGylation of alpha4beta1-targeted small molecules with retention of activity in vitro and in vivo. 2a-PEG, and related compounds, will be valuable reagents for assessing alpha4beta1 biology and may provide a new therapeutic approach to treatment of human inflammatory diseases.

Related Organizations
Keywords

Encephalomyelitis, Autoimmune, Experimental, Injections, Subcutaneous, Phenylurea Compounds, Anti-Inflammatory Agents, Myelin Basic Protein, Integrin alpha4beta1, Polyethylene Glycols, Rats, Jurkat Cells, Rats, Inbred Lew, Drug Design, Injections, Intravenous, Luminescent Measurements, Cell Adhesion, Animals, Humans, Paralysis, Female, Lymphocyte Count, Oligopeptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%