Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Cell
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Hedgehog-Regulated Costal2-Kinase Complexes Control Phosphorylation and Proteolytic Processing of Cubitus Interruptus

Authors: Zhang, Wensheng; Zhao, Yun; Tong, Chao; Wang, Gelin; Wang, Bing; Jia, Jianhang; Jiang, Jin;

Hedgehog-Regulated Costal2-Kinase Complexes Control Phosphorylation and Proteolytic Processing of Cubitus Interruptus

Abstract

Hedgehog (Hh) proteins control animal development by regulating the Gli/Ci family of transcription factors. In Drosophila, Hh counteracts phosphorylation by PKA, GSK3, and CKI to prevent Cubitus interruptus (Ci) processing through unknown mechanisms. Here, we show that these kinases physically interact with the kinesin-like protein Costal2 (Cos2) to control Ci processing and that Hh inhibits such interaction. Cos2 is required for Ci phosphorylation in vivo, and Cos2-immunocomplexes (Cos2IPs) phosphorylate Ci and contain PKA, GSK3, and CKI. By using a Kinesin-Cos2 chimeric protein that carries Cos2-interacting proteins to the microtubule plus end, we demonstrated that these kinases bind Cos2 in intact cells. PKA, GSK3, and CKI directly bind the N- and C-terminal regions of Cos2, both of which are essential for Ci processing. Finally, we showed that Hh signaling inhibits Cos2-kinase complex formation. We propose that Cos2 recruits multiple kinases to efficiently phosphorylate Ci and that Hh inhibits Ci phosphorylation by specifically interfering with kinase recruitment.

Keywords

Binding Sites, Casein Kinase I, Recombinant Fusion Proteins, Kinesins, Genes, Insect, Cyclic AMP-Dependent Protein Kinases, Models, Biological, Protein Structure, Tertiary, Animals, Genetically Modified, DNA-Binding Proteins, Glycogen Synthase Kinase 3, Phenotype, Mutation, Animals, Drosophila Proteins, Drosophila, Hedgehog Proteins, Phosphorylation, Protein Processing, Post-Translational, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    172
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
172
Top 10%
Top 10%
Top 1%
hybrid