Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2009
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2009
Data sources: HAL Descartes
Journal of Cell Science
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Interplay between Rab5 and PtdIns(4,5)P2 controls early endocytosis in theDrosophilagermline

Authors: Compagnon, Julien; Gervais, Louis; Roman, Mabel San; Chamot-B Oelig Uf, Sophy; Guichet, Antoine;

Interplay between Rab5 and PtdIns(4,5)P2 controls early endocytosis in theDrosophilagermline

Abstract

Phosphoinositides have emerged as key regulators of membrane traffic through their control of the localization and activity of several effector proteins. Both Rab5 and phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] are involved in the early steps of the clathrin-dependent endocytic pathway, but little is known about how their functions are coordinated. We have studied the role of PtdIns(4,5)P2 and Rab5 in the Drosophila germline during oogenesis. We found that Rab5 is required for the maturation of early endocytic vesicles. We show that PtdIns(4,5)P2 is required for endocytic-vesicle formation, for Rab5 recruitment to endosomes and, consistently, for endocytosis. Furthermore, we reveal a previously undescribed role of Rab5 in releasing PtdIns(4,5)P2, PtdIns(4,5)P2-binding budding factors and F-actin from early endocytic vesicles. Finally, we show that overexpressing the PtdIns(4,5)P2-synthesizing enzyme Skittles leads to an endocytic defect that is similar to that seen in rab5 loss-of-function mutants. Hence, our results argue strongly in favor of the hypothesis that the Rab5-dependant release of PtdIns(4,5)P2 from endosomes that we discovered in this study is crucial for endocytosis to proceed.

Keywords

Phosphatidylinositol 4,5-Diphosphate, Endosomes, Endocytosis, 5)-bisphosphate, Drosophila melanogaster, Germ Cells, Oogenesis, Rab5, [SDV.BDD] Life Sciences [q-bio]/Development Biology, Oocytes, Animals, Drosophila Proteins, Drosophila, RNA Interference, Phosphatidylinositol (4, Transport Vesicles, rab5 GTP-Binding Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Average
Top 10%
hybrid