Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Cell Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property

Authors: R, Salingcarnboriboon; H, Yoshitake; K, Tsuji; M, Obinata; T, Amagasa; A, Nifuji; M, Noda;

Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property

Abstract

Development of the musculoskeletal system requires coordinated formation of distinct types of tissues, including bone, cartilage, muscle, and tendon. Compared to muscle, cartilage, and bone, cellular and molecular bases of tendon development have not been well understood due to the lack of tendon cell lines. The purpose of this study was to establish and characterize tendon cell lines. Three clonal tendon cell lines (TT-E4, TT-G11, and TT-D6) were established using transgenic mice harboring a temperature-sensitive mutant of SV40 large T antigen. Proliferation of these cells was significantly enhanced by treatment with bFGF and TGF-beta but not BMP2. Tendon phenotype-related genes such as those encoding scleraxis, Six1, EphA4, COMP, and type I collagen were expressed in these tendon cell clones. In addition to tendon phenotype-related genes, expression of osteopontin and Cbfal was observed. These clonal cell lines formed hard fibrous connective tissue when implanted onto chorioallantoic membrane in ovo. Furthermore, these cells also formed tendon-like tissues when they were implanted into defects made in patella tendon in mice. As these tendon cell lines also produced fibrocartilaginous tissues in tendon defect implantation experiments, mesenchymal stem cell properties were examined. Interestingly, these cells expressed genes related to osteogenic, chondrogenic, and adipogenic lineages at low levels when examined by RT-PCR. TT-G11 and TT-E4 cells differentiated into either osteoblasts or adipocytes, respectively, when they were cultured in cognate differentiation medium. These observations indicated that the established tendon cell line possesses mesenchymal stem cell-like properties, suggesting the existence of mesenchymal stem cell in tendon tissue.

Keywords

Pluripotent Stem Cells, Osteoblasts, Cell Transplantation, Antigens, Polyomavirus Transforming, Sialoglycoproteins, Cell Differentiation, Mice, Transgenic, Chick Embryo, Chorion, Collagen Type I, Cell Line, Clone Cells, Mesoderm, Mice, Adipocytes, Animals, Cattle, Fibroblast Growth Factor 2, Osteopontin, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    225
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
225
Top 1%
Top 1%
Top 10%