Watching tubules glow and branch
pmid: 15964757
Watching tubules glow and branch
Branching morphogenesis is an important mechanism of animal development yet, until recently, most details about this highly dynamic process have had to be inferred from fixed tissues. Several groups have now developed transgenic animals in which branching tubules express fluorescent proteins, enabling their morphogenesis to be studied dynamically using time-lapse microscopy. The results have shown that branch emergence is highly variable, that sprouting tracheae and blood vessels guide themselves by filopodial projections, that branching morphogenesis can involve highly ordered cell rearrangements, and that branches are subject to intense remodelling. Though they are very new, these fluorescent systems have already expanded our knowledge of branching morphogenesis; future work, in which fluorescence might be used to report processes in addition to anatomy, promises an even greater advance.
- University of Edinburgh United Kingdom
Microscopy, Fluorescence, Recombinant Fusion Proteins, Green Fluorescent Proteins, Morphogenesis, Animals, Blood Vessels, Endothelium, Vascular, Kidney, Epithelium
Microscopy, Fluorescence, Recombinant Fusion Proteins, Green Fluorescent Proteins, Morphogenesis, Animals, Blood Vessels, Endothelium, Vascular, Kidney, Epithelium
26 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
