Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Medicine R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Medicine Reports
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Neuroprotection induced by Navβ2‑knockdown in APP/PS1 transgenic neurons is associated with NEP regulation

Authors: Tao, Hu; Shan-Shan, Li; Min-Nan, Lu; Li, Zhang; Bo, Chen; Rui, Mao; Rong, Mei; +3 Authors

Neuroprotection induced by Navβ2‑knockdown in APP/PS1 transgenic neurons is associated with NEP regulation

Abstract

Voltage‑gated sodium channel β2 (Navβ2), as an unconventional substrate of β‑site amyloid precursor protein cleaving enzyme 1, is involved in regulating the neuronal surface expression of sodium channels. A previous study demonstrated that knockdown of Navβ2 protected neurons and induced spatial cognition improvement by partially reducing pathological amyloidogenic processing of amyloid precursor protein (APP) in aged APP/presenilin 1 (PS1) transgenic mice. The present study aimed to investigate whether Navβ2 knockdown altered APP metabolism via regulation of the Aβ‑degrading enzyme neprilysin (NEP). APPswe/PS1ΔE9 mice (APP/PS1 transgenic mice with a C57BL/6J genetic background) carrying a Navβ2‑knockdown mutation (APP/PS1/Navβ2‑kd) or without Navβ2 knockdown (APP/PS1) were used for cell culture and further analysis. The present results demonstrated that in APP/PS1 mouse‑derived neurons, Navβ2 knockdown partially reversed the reduction in pathological APP cleavage, and the recovery of neurite extension and neuron area. Additionally, Navβ2 knockdown increased NEP activity and levels, and the levels of intracellular domain fragment binding to the NEP promoter. The present findings suggested that knockdown of Navβ2 reversed the APP/PS1 mutation‑induced deficiency in amyloid β degradation by regulating NEP.

Related Organizations
Keywords

Neurons, Voltage-Gated Sodium Channel beta-2 Subunit, Mice, Transgenic, Hippocampus, Neuroprotection, Amyloid beta-Protein Precursor, Disease Models, Animal, Mice, Mutation, Presenilin-1, Animals, Humans, Neprilysin, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
bronze