Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Role of EP2 and EP4 receptor-selective agonists of prostaglandin E2 in acute and chronic kidney failure

Authors: Vukicevic, S.; Simic, P.; Borovecki, F.; Grgurevic, L.; Rogic, D.; Orlic, I.; Grasser, W.A.; +2 Authors

Role of EP2 and EP4 receptor-selective agonists of prostaglandin E2 in acute and chronic kidney failure

Abstract

We tested the efficacy of three selective agonists of prostaglandin E(2) (PGE(2)) receptor, EP2 (CP-536,745-01), EP2/4 (CP-043,305-02), and EP4 (CP-044,519-02), in two models of acute and chronic kidney failure. In the nephrotoxic mercury chloride (HgCl(2)) rat model of acute kidney failure systemically administered EP4 agonist reduced the serum creatinine values and increased the survival rate. Although the EP2 or the EP2/4 agonist did not change the serum creatinine values, the EP2 receptor agonist increased the survival rate. Histological evaluation of kidneys from EP4-treated rats indicated less proximal tubular necrosis and less apoptotic cells. In a rat model of chronic renal failure, the three receptor agonists decreased the serum creatinine and increased the glomerular filtration rate at 9 weeks following therapy. Kidneys treated with the EP4 agonist had less glomerular sclerosis, better preservation of proximal and distal tubules and blood vessels, increased convoluted epithelium proliferation and less apoptotic cells. Nephrectomy had no influence on the expression of the EP4 receptor, whereas EP2 receptor expression was reduced by 50% and then corrected following treatment with EP2 and EP2/4 receptor agonists. These findings suggest that PGE(2) has an important role in acute kidney failure via the EP4 receptor, whereas in chronic kidney failure both EP2 and EP4 receptors are equally important in preserving the progression of chronic kidney failure. Thus, agonism of EP2 and EP4 receptors may provide a basis for treating acute and chronic kidney failure.

Keywords

Male, prostaglandin E2, ARF, CRF, Acute Kidney Injury, Receptors, Prostaglandin E, EP2 Subtype, prostaglandin E2; ARF; CRF; EP2 receptor; EP4 receptor, Immunohistochemistry, Nephrectomy, Dinoprostone, EP4 receptor, Rats, Disease Models, Animal, Nephrology, Mercuric Chloride, Animals, Kidney Failure, Chronic, Receptors, Prostaglandin E, Rats, Wistar, Receptors, Prostaglandin E, EP4 Subtype, EP2 receptor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
hybrid