Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2011 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2011
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions

In Vitro Grown Sheep Preantral Follicles Yield Oocytes with Normal Nuclear-Epigenetic Maturation

Authors: BARBONI, Barbara; RUSSO, Valentina; Cecconi S; CURINI, VALENTINA; COLOSIMO, Alessia; Garofalo MLA; MATTIOLI, Mauro; +3 Authors

In Vitro Grown Sheep Preantral Follicles Yield Oocytes with Normal Nuclear-Epigenetic Maturation

Abstract

Assisted reproductive technologies allow to utilize a limited number of fully grown oocytes despite the presence in the ovary of a large pool of meiotically incompetent gametes potentially able to produce live births. In vitro folliculogenesis could be useful to recruit these oocytes by promoting their growth and differentiation.In vitro folliculogenesis was performed starting from sheep preantral (PA) follicles to evaluate oocyte nuclear/epigenetic maturation. Chromatin configuration, quantification of global DNA methylation, and epigenetic remodelling enzymes were evaluated with immunocytochemistry, telomere elongation was assessed with the Q-FISH technique, while the DNA methylation status at the DMRs of maternally IGF2R and BEGAIN, and paternally H19 methylated imprinted genes was determined by bisulfite sequencing and COBRA. Specifically, 70% of PA underwent early antrum (EA) differentiation and supported in culture oocyte global DNA methylation, telomere elongation, TERT and Dnmt3a redistribution thus mimicking the physiological events that involve the oocyte during the transition from secondary to tertiary follicle. Dnmt1 anticipated cytoplasmic translocation in in vitro grown oocytes did not impair global and single gene DNA methylation. Indeed, the in vitro grown oocytes acquired a methylation profile of IGF2R and BEGAIN compatible with the follicle/oocyte stage reached, and maintained an unmethylated status of H19. In addition, the percentage of oocytes displaying a condensed chromatin configuration resulted lower in in vitro grown oocytes, however, their ability to undergo meiosis and early embryo development after IVF and parthenogenetic activation was similar to that recorded in EA follicle in vivo grown oocytes.In conclusion, the in vitro folliculogenesis was able to support the intracellular/nuclear mechanisms leading the oocytes to acquire a meiotic and developmental competence. Thus, the in vitro culture may increase the availability of fertilizable oocytes in sheep, and become an in vitro translational model to investigate the mechanisms governing nuclear/epigenetic oocyte maturation.

Related Organizations
Keywords

DNA (Cytosine-5-)-Methyltransferase 1, Science, Intracellular Space, Nerve Tissue Proteins, Fertilization in Vitro, Fluorescence, Epigenesis, Genetic, Ovarian Follicle, Animals, DNA (Cytosine-5-)-Methyltransferases, Cells, Cultured, In Situ Hybridization, Fluorescence, Cell Proliferation, Cell Nucleus, Q, R, Gene Expression Regulation, Developmental, DNA Methylation, Chromatin Assembly and Disassembly, Embryo, Mammalian, Chromatin, Oocytes, Medicine, Female, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Green
gold