Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression

Authors: Takehiko, Takata; Fuyuki, Ishikawa;

Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression

Abstract

The Hairy-related bHLH proteins function as transcriptional repressors in most cases and play important roles in diverse aspects of metazoan development. Recently, it was shown that the Drosophila bHLH repressor proteins, Hairy and Deadpan, bind to and function with the NAD(+)-dependent histone deacetylase, Sir2. Here we demonstrate that the human Sir2 homologue, SIRT1, also physically associates with the human bHLH repressor proteins, hHES1 and hHEY2, both in vitro and in vivo. Moreover, using the reporter assay, we show that both SIRT1-dependent and -independent deacetylase pathways are involved in the transcriptional repressions mediated by these bHLH repressors. These results indicate that the molecular association between bHLH proteins and Sir2-related proteins is conserved among metazoans, from Drosophila to human, and suggest that the Sir2-bHLH interaction also plays important roles in human cells.

Related Organizations
Keywords

Homeodomain Proteins, Transcription, Genetic, Recombinant Fusion Proteins, Helix-Loop-Helix Motifs, Histone Deacetylases, Repressor Proteins, Gene Expression Regulation, Sirtuin 1, Genes, Reporter, Basic Helix-Loop-Helix Transcription Factors, Animals, Drosophila Proteins, Humans, Sirtuins, Transcription Factor HES-1, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    136
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
136
Top 10%
Top 1%
Top 10%