Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Immunology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

The Ewing Sarcoma Protein (EWS) Binds Directly to the Proximal Elements of the Macrophage-Specific Promoter of the CSF-1 Receptor (csf1r) Gene

Authors: Hume, David A.; Sasmono, Tedjo; Himes, S. Roy; Sharma, Sudarshana M.; Bronisz, Agnieszka; Constantin, Myrna; Ostrowski, Michael C.; +1 Authors

The Ewing Sarcoma Protein (EWS) Binds Directly to the Proximal Elements of the Macrophage-Specific Promoter of the CSF-1 Receptor (csf1r) Gene

Abstract

Abstract Many macrophage-specific promoters lack classical transcriptional start site elements such as TATA boxes and Sp1 sites. One example is the CSF-1 receptor (CSF-1R, CD115, c-fms), which is used as a model of the transcriptional regulation of macrophage genes. To understand the molecular basis of start site recognition in this gene, we identified cellular proteins binding specifically to the transcriptional start site (TSS) region. The mouse and human csf1r TSS were identified using cap analysis gene expression (CAGE) data. Conserved elements flanking the TSS cluster were analyzed using EMSAs to identify discrete DNA-binding factors in primary bone marrow macrophages as candidate transcriptional regulators. Two complexes were identified that bind in a highly sequence-specific manner to the mouse and human TSS proximal region and also to high-affinity sites recognized by myeloid zinc finger protein 1 (Mzf1). The murine proteins were purified by DNA affinity isolation from the RAW264.7 macrophage cell line and identified by mass spectrometry as EWS and FUS/TLS, closely related DNA and RNA-binding proteins. Chromatin immunoprecipitation experiments in bone marrow macrophages confirmed that EWS, but not FUS/TLS, was present in vivo on the CSF-1R proximal promoter in unstimulated primary macrophages. Transfection assays suggest that EWS does not act as a conventional transcriptional activator or repressor. We hypothesize that EWS contributes to start site recognition in TATA-less mammalian promoters.

Keywords

Macrophages/physiology, Transcription, Genetic, Immunology, Molecular Sequence Data, Gene Expression, Electrophoretic Mobility Shift Assay, Receptor, Macrophage Colony-Stimulating Factor, Transfection, Cell Line, Mice, C1, RNA-Binding Protein EWS/metabolism, Animals, Humans, Immunoprecipitation, Promoter Regions, Genetic, Conserved Sequence, Phylogeny, Base Sequence, Macrophages, Receptor, Macrophage Colony-Stimulating Factor/genetics, Electrophoresis, Polyacrylamide Gel, RNA-Binding Protein EWS, 060405 Gene Expression (incl. Microarray and other genome-wide approaches)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Average
Top 10%
Green
bronze