Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiologia Plantaru...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physiologia Plantarum
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Enhanced ATP‐dependent copper efflux across the root cell plasma membrane in copper‐tolerant Silene vulgaris

Authors: van Hoof, N.A.L.M.; Koevoets, P.L.M.; Hakvoort, H.W.J.; ten Bookum, W.M.; Schat, H.; Verkley, J.A.C.; Ernst, W.H.O.;

Enhanced ATP‐dependent copper efflux across the root cell plasma membrane in copper‐tolerant Silene vulgaris

Abstract

We studied copper uptake in inside‐out plasma membrane vesicles derived from roots of copper‐sensitive, moderately copper‐tolerant and highly copper‐tolerant populations of Silene vulgaris (Amsterdam, Marsberg and Imsbach, respectively). Plasma membrane vesicles were isolated using the two‐phase partitioning method and copper efflux was measured using direct filtration experiments. Vesicles derived from Imsbach plants accumulated two and three times more copper than those derived from Marsberg and Amsterdam plants, respectively. This accumulation was ATP‐dependent. Also, 9‐amino‐6‐chloro‐2‐methoxyacridine fluorescence quenching rates upon copper addition decreased in the order Imsbach>Marsberg>Amsterdam. Our results support the hypothesis that efflux of copper across the root plasma membrane plays a role in the copper tolerance mechanism in S. vulgaris.

Country
Netherlands
Related Organizations
Keywords

SDG 6 - Clean Water and Sanitation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%