Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster.
Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster.
Terminal deficiencies at the tip of the X chromosome can be induced at a high frequency (0.2-0.3%) by irradiating Drosophila females carrying a homozygous mutator (mu-2) with low doses of X-rays. These terminal deficiencies are unstable, since over a period of 3 1/2 years DNA sequences were lost from their distal ends at a rate of 75 bp per generation, presumably due to the absence of a complete wild-type telomeric structure. Breakpoints of these deletions in the 5' upstream regulatory region of the yellow gene, giving rise to a mosaic cuticle pigmentation pattern typical of the y2 type, were used to define the location of tissue-specific cis-acting regulatory elements that are required for body, wing or bristle pigmentation.
- University of California, Irvine United States
Male, X-Rays, DNA, DNA Restriction Enzymes, Chromosomes, Drosophila melanogaster, Genes, Regulator, Mutation, Animals, Female, Crosses, Genetic
Male, X-Rays, DNA, DNA Restriction Enzymes, Chromosomes, Drosophila melanogaster, Genes, Regulator, Mutation, Animals, Female, Crosses, Genetic
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).117 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
