Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

cDNA Cloning and Characterization of a cis-Retinol/3α-Hydroxysterol Short-chain Dehydrogenase

Authors: X, Chai; Y, Zhai; J L, Napoli;

cDNA Cloning and Characterization of a cis-Retinol/3α-Hydroxysterol Short-chain Dehydrogenase

Abstract

We report a mouse cDNA that encodes a 317-amino acid short-chain dehydrogenase which recognizes as substrates 9-cis-retinol, 11-cis-retinol, 5alpha-androstan-3alpha,17beta-diol, and 5alpha-androstan-3alpha-ol-17-one. This cis-retinol/androgen dehydrogenase (CRAD) shares closest amino acid similarity with mouse retinol dehydrogenase isozymes types 1 and 2 (86 and 91%, respectively). Recombinant CRAD uses NAD+ as its preferred cofactor and exhibits cooperative kinetics for cis-retinoids, but Michaelis-Menten kinetics for 3alpha-hydroxysterols. Unlike recombinant retinol dehydrogenase isozymes, recombinant CRAD was inhibited by 4-methylpyrazole, was not stimulated by ethanol, and did not require phosphatidylcholine for optimal activity. CRAD mRNA was expressed intensely in kidney and liver, in contrast to retinol dehydrogenase isozymes, which show strong mRNA expression only in liver. CRAD mRNA expression was widespread (relative abundance): kidney (100) > liver (92) > small intestine (9) = heart (9) > retinal pigment epithelium and sclera (4.5) > brain (2) > retina and vitreous (1.6) > spleen (0.7) > testis (0.6) > lung (0.4). CRAD may catalyze the first step in an enzymatic pathway from 9-cis-retinol to generate the retinoid X receptor ligand 9-cis-retinoic acid and/or may regenerate dihydrotestosterone from its catabolite 5alpha-androstan-3alpha,17beta-diol. These data also illustrate the multifunctional nature of short-chain dehydrogenases and provide a potential mechanism for androgen-retinoid interactions.

Keywords

DNA, Complementary, Base Sequence, Molecular Sequence Data, Dihydrotestosterone, CHO Cells, Alcohol Oxidoreductases, Kinetics, Mice, Cricetinae, Retinaldehyde, Animals, Tissue Distribution, Amino Acid Sequence, Diterpenes, Vitamin A

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Average
Top 10%
Top 10%
gold