Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Immunologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Immunology
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2002
Data sources: Hal
versions View all 3 versions

How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease

Authors: Madelon M. Maurice; Barry P. Simmons; Mariana Maccioni; Mariana Maccioni; Mariana Maccioni; Christophe Benoist; Christophe Benoist; +9 Authors

How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease

Abstract

Arthritis in the K/BxN mouse model results from pathogenic immunoglobulins (Igs) that recognize the ubiquitous cytoplasmic enzyme glucose-6-phosphate isomerase (GPI). But how is a joint-specific disease of autoimmune and inflammatory nature induced by systemic self-reactivity? No unusual amounts or sequence, splice or modification variants of GPI expression were found in joints. Instead, immunohistological examination revealed the accumulation of extracellular GPI on the lining of the normal articular cavity, most visibly along the cartilage surface. In arthritic mice, these GPI deposits were amplified and localized with IgG and C3 complement. Similar deposits were found in human arthritic joints. We propose that GPI-anti-GPI complexes on articular surfaces initiate an inflammatory cascade via the alternative complement pathway, which is unbridled because the cartilage surface lacks the usual cellular inhibitors. This may constitute a generic scenario of arthritogenesis, in which extra-articular proteins coat the cartilage or joint extracellular matrix.

Keywords

Cartilage, Articular, Male, Cytoplasm, DNA, Complementary, [SDV.IMM] Life Sciences [q-bio]/Immunology, Base Sequence, Molecular Sequence Data, Glucose-6-Phosphate Isomerase, Mice, Transgenic, Antibodies, Arthritis, Rheumatoid, Mice, Inbred C57BL, Disease Models, Animal, Mice, Mice, Inbred NOD, Animals, Humans, Female, Ankle Joint

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    321
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
321
Top 10%
Top 1%
Top 0.1%