Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A Novel Ligand-independent Apoptotic Pathway Induced by Scavenger Receptor Class B, Type I and Suppressed by Endothelial Nitric-oxide Synthase and High Density Lipoprotein

Authors: Xiang-An Li; James Dressman; Ling Guo; Eric J. Smart; Reto Asmis;

A Novel Ligand-independent Apoptotic Pathway Induced by Scavenger Receptor Class B, Type I and Suppressed by Endothelial Nitric-oxide Synthase and High Density Lipoprotein

Abstract

Scavenger receptor class B, type I (SR-BI)/ApoE double null mice develop severe atherosclerosis within 4 weeks, whereas ApoE null mice take several months to develop the disease, indicating that SR-BI plays a pivotal role in atherosclerosis. Importantly, SR-BI/ApoE double null mice have lower plasma cholesterol levels than ApoE null mice, suggesting involvement of a non-lipids mechanism. In the present study, we revealed a novel ligand-independent apoptotic pathway induced by SR-BI, and regulated by endothelial nitric-oxide synthase (eNOS) and high density lipoprotein (HDL). SR-BI significantly induces apoptosis in three independent cell systems. In contrast to known ligand-dependent apoptotic pathways, SR-BI-induced apoptosis is ligand-independent. We further showed that SR-BI-induced apoptosis is suppressed by eNOS and HDL. By using a single site mutation, we demonstrated that SR-BI induces apoptosis through a highly conserved CXXS redox motif. We finally demonstrated that SR-BI-induced apoptosis is via the caspase-8 pathway. We hypothesize that in healthy cells, the SR-BI apoptotic pathway is turned off by eNOS and HDL which prevents inappropriate apoptotic damage to the vascular wall. When HDL levels are low, oxidative stress causes the relocation of eNOS away from caveolae, which turns on SR-BI-induced apoptosis and rapidly clears damaged cells to prevent further inflammatory damage to neighboring cells. The current studies offer a new paradigm in which to study the non-cholesterol effects of SR-BI, HDL, and eNOS on the development of atherosclerosis and potentially other cardiovascular diseases.

Related Organizations
Keywords

CD36 Antigens, Inflammation, Binding Sites, DNA, Complementary, Arteriosclerosis, Lipoproteins, Amino Acid Motifs, Immunoblotting, Apoptosis, CHO Cells, Ligands, Lipid Metabolism, Enzyme Activation, Mice, Apolipoproteins E, Cricetinae, In Situ Nick-End Labeling, Animals, Humans, Lipoproteins, HDL

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
gold