Homothorax plays autonomous and nonautonomous roles in proximodistal axis formation and migration of the Drosophila renal tubules
doi: 10.1002/dvdy.24011
pmid: 23821438
Homothorax plays autonomous and nonautonomous roles in proximodistal axis formation and migration of the Drosophila renal tubules
The Drosophila Malpighian tubules (MpTs) serve as a functional equivalent of the mammalian renal tubules. The MpTs are composed of two pairs of epithelial tubes that bud from the midgut–hindgut boundary during embryogenesis. The MpT primordia grow, elongate and migrate through the body cavity to assume their final position and shape. The stereotypic pattern of MpT migration is regulated by multiple intrinsic and extrinsic signals, many of which are still obscure. In this work, we implicate the TALE‐class homeoprotein Homothorax (Hth) in MpT patterning. We show that in the absence of Hth the tubules fail to rearrange and migrate. Hth plays both autonomous and nonautonomous roles in this developmental process. Within the tubules Hth is required for convergent extension and for defining distal versus proximal cell identities. The difference between distal and proximal cell identities seems to be required for proper formation of the leading loop. Outside the tubules, wide‐range mesodermal expression of Hth is required for directing anterior migration. The nonautonomous effects of Hth on MpT migration can be partially attributed to its effects on homeotic determination along the anterior posterior axis of the embryo and to its effects on stellate cell (SC) incorporation into the MpT. Developmental Dynamics 243:132–144, 2014. © 2013 Wiley Periodicals, Inc.
Homeodomain Proteins, Mesoderm, Kidney Tubules, Animals, Drosophila Proteins, Drosophila, Transcription Factors
Homeodomain Proteins, Mesoderm, Kidney Tubules, Animals, Drosophila Proteins, Drosophila, Transcription Factors
30 Research products, page 1 of 3
- 2019IsRelatedTo
- 2019IsRelatedTo
- 2019IsRelatedTo
- 2019IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsRelatedTo
- 2017IsRelatedTo
- 2019IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
