Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2006 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Delayed Development of Adult-Generated Granule Cells in Dentate Gyrus

Authors: Linda S, Overstreet-Wadiche; Aesoon L, Bensen; Gary L, Westbrook;

Delayed Development of Adult-Generated Granule Cells in Dentate Gyrus

Abstract

A substantial fraction of adult-generated granule cells in the dentate gyrus survive and integrate into the existing neuronal network. These newborn neurons must navigate the environment of the adult brain, a setting that is presumably less optimized for neuronal maturation compared with that in the developing brain. We used EGFP (enhanced green fluorescent protein) expression in newborn granule cells to compare the maturation of adult-generated granule cells to those generated in neonates. Labeled newborn granule cells had indistinguishable physiological properties in adults and neonates, indicating they were at the same functional stage. However, the maturation of adult-generated granule cells was slower than neonatal-generated granule cells. Depolarizing GABAergic network activity and transcription factor activation were reduced in adults relative to neonates, suggesting a role for neural activity in the maturation of newborn granule cells. Consistent with this idea, maturation was altered in mice lacking the GABA synthetic enzyme GAD65 (glutamic acid decarboxylase 65). Together, these results provide evidence that activity-dependent processes in the local environment influence the maturation of newborn granule cells.

Related Organizations
Keywords

Neurons, Aging, Time Factors, Hippocampus, Nerve Regeneration, Mice, Inbred C57BL, Mice, Animals, Newborn, Cerebellar Nuclei, Animals, Cells, Cultured, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    156
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
156
Top 10%
Top 10%
Top 1%
hybrid