Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical Cancer Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Cancer Research
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

LIM and SH3 Protein 1 Induces TGFβ-Mediated Epithelial–Mesenchymal Transition in Human Colorectal Cancer by Regulating S100A4 Expression

Authors: Hui, Wang; Jiaolong, Shi; Yuhao, Luo; Qing, Liao; Ya, Niu; Feifei, Zhang; Ziyun, Shao; +2 Authors

LIM and SH3 Protein 1 Induces TGFβ-Mediated Epithelial–Mesenchymal Transition in Human Colorectal Cancer by Regulating S100A4 Expression

Abstract

Abstract Purpose: The expression of LIM and SH3 protein 1 (LASP1) was upregulated in colorectal cancer cases, thereby contributing to the aggressive phenotypes of colorectal cancer cells. However, we still cannot decipher the underlying molecular mechanism associated with colorectal cancer metastasis. Experimental Design: In this study, IHC was performed to investigate the expression of proteins in human colorectal cancer tissues. Western blot analysis was used to assess the LASP1-induced signal pathway. Two-dimensional difference gel electrophoresis was performed to screen LASP1-modulated proteins and uncover the molecular mechanism of LASP1. TGFβ was used to induce an epithelial–mesenchymal transition (EMT). Results: LASP1 expression was correlated with the mesenchymal marker vimentin and was inversely correlated with epithelial markers, namely, E-cadherin and β-catenin, in clinical colorectal cancer samples. The gain- and loss-of-function assay showed that LASP1 induces EMT-like phenotypes in vitro and in vivo. S100A4, identified as a LASP1-modulated protein, was upregulated by LASP1. Moreover, it is frequently coexpressed with LASP1 in colorectal cancer. S100A4 was required for EMT, and an increased cell invasiveness of colorectal cancer cell is induced by LASP1. Furthermore, the stimulation of TGFβ resulted in an activated Smad pathway that increased the expression of LASP1 and S100A4. The depletion of LASP1 or S100A4 expression inhibited the TGFβ signaling pathway. Moreover, it significantly weakened the proinvasive effects of TGFβ on colorectal cancer cells. Conclusion: These findings elucidate the central role of LASP1 in the TGFβ-mediated EMT process and suggest a potential target for the clinical intervention in patients with advanced colorectal cancer. Clin Cancer Res; 20(22); 5835–47. ©2014 AACR.

Related Organizations
Keywords

Epithelial-Mesenchymal Transition, S100 Proteins, LIM Domain Proteins, Cadherins, Up-Regulation, Gene Expression Regulation, Neoplastic, Cytoskeletal Proteins, Transforming Growth Factor beta, Cell Line, Tumor, Humans, Vimentin, Neoplasm Invasiveness, S100 Calcium-Binding Protein A4, Colorectal Neoplasms, beta Catenin, Adaptor Proteins, Signal Transducing, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 1%
bronze