Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 1989 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 1990
versions View all 2 versions

Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae

Authors: Gertrud Mannhaupt; Christa Schwarzlose; Ursula Pilz; Horst Feldmann; Rolf Stucka;

Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae

Abstract

TYR1, the gene from Saccharomyces cerevisiae, which encodes prephenate dehydrogenase, one of the tyrosine biosynthetic enzymes, has been cloned by complementing a yeast tyr1 mutant strain. The DNA fragment containing the gene is part of a 45-kb cosmid clone which represents a region of chromosome II covering the genetically mapped tyr1 locus. The nucleotide sequence of a 3.1-kb region carrying the TYR1 gene and adjacent regions has been determined. The open reading frame contains 441 codons, corresponding to about 52.2 kDa for the encoded protein. The canonical NAD-binding domain is located within the first 45 amino acids of the protein. By primer extension, we show that there is one transcription start point. Presumably, the expression of TYR1 is not under the general GCN4 control. Instead, we find a dependence on the presence or absence of phenylalanine. These data were obtained by analysing CAT activity in constructs containing promoter fragments of TYR1 and the cat reporter gene.

Keywords

Prephenate Dehydrogenase, Base Sequence, Genes, Fungal, Molecular Sequence Data, Restriction Mapping, Saccharomyces cerevisiae, Mutation, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Oxidoreductases, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Top 10%