Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiologia Plantaru...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physiologia Plantarum
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

The chloroplast ATP‐dependent Clp protease in vascular plants – new dimensions and future challenges

Authors: Adrian K, Clarke;

The chloroplast ATP‐dependent Clp protease in vascular plants – new dimensions and future challenges

Abstract

The ATP‐dependent Clp protease is by far the most intricate protease in chloroplasts of vascular plants. Structurally, it is particularly complex with a proteolytic core complex containing 11 distinct subunits along with three potential chaperone partners. The Clp protease is also essential for chloroplast development and overall plant viability. Over the past decade, many of the important characteristics of this crucial protease have been revealed in the model plant species Arabidopsis thaliana. Despite this, challenges still remain in fully resolving certain key features, in particular, how the assembly of this multisubunit protease is regulated, the full range of native protein substrates and how they are targeted for degradation and how this complicated enzyme might have developed from simpler bacterial forms. This article focuses upon the recent advances in revealing the details underlying these important features. It also take the opportunity to speculate upon many of these findings in the hope of stimulating further investigation.

Related Organizations
Keywords

Enzyme Activation, Chloroplast Proteins, Chloroplasts, Cell Survival, Plant Cells, Proteolysis, Arabidopsis, Endopeptidase Clp, Plant Physiological Phenomena, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%