Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Integrin-linked kinase regulates melanoma angiogenesis by activating NF-κB/interleukin-6 signaling pathway

Authors: Wani, AA; Jafarnejad, SM; Zhou, J; Li, G;

Integrin-linked kinase regulates melanoma angiogenesis by activating NF-κB/interleukin-6 signaling pathway

Abstract

Integrin-linked kinase (ILK) is a highly conserved serine-threonine protein kinase involved in cell-extracellular matrix interactions, cytoskeletal organization and cell signaling. Overexpression of ILK in epithelial cells leads to anchorage-independent growth with increased cell cycle progression. Previously, we have shown that ILK upregulation strongly correlates with melanoma progression, invasion and inversely correlates with 5-year survival of melanoma patients. However, the molecular mechanism by which ILK enhances melanoma progression is currently unknown. In the present study, we found that proangiogenic molecule interleukin-6 (IL-6) is the downstream target of ILK in melanoma cells. ILK overexpression increased IL-6, whereas silencing of ILK suppressed IL-6 expression at both messenger RNA and protein levels. ILK also altered the activity and subcellular localization of nuclear factor-kappaB (NF-κB) subunit p65. We further found that ILK enhanced the IL-6 gene transcription by promoting the binding of NF-κB p65 to IL-6 promoter. Moreover, ILK overexpression in melanoma cells enhanced the tube-forming ability of endothelial cells in vitro and microvessel formation in vivo. ILK-induced tube and blood vessel formation of endothelial cells was significantly reduced upon IL-6 inhibition in ILK-overexpressing melanoma cells. To delineate the mechanism by which ILK-induced IL-6 production can enhance angiogenesis, further analysis of the downstream targets of IL-6 signaling showed an increased activity of the signal transducer and activator of transcription 3 (STAT3) in ILK-overexpressing cells. As STAT3 binds to vascular endothelial growth factor (VEGF) promoter, we found that VEGF levels were elevated in ILK-overexpressing cells and declined upon transfection of IL-6 small interfering RNA, suggesting that ILK may regulate VEGF expression through IL-6 pathway by activating STAT3.

Keywords

STAT3 Transcription Factor, Vascular Endothelial Growth Factor A, Neovascularization, Pathologic, Interleukin-6, Active Transport, Cell Nucleus, Transcription Factor RelA, 610, Neovascularization, Physiologic, Protein Serine-Threonine Kinases, Gene Expression Regulation, Cell Line, Tumor, Humans, Promoter Regions, Genetic, Melanoma, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
bronze