Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cellular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Biochemistry
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

BCCIP associates with the receptor protein tyrosine phosphatase PTPµ

Authors: Polly J, Phillips-Mason; Tracy, Mourton; Denice L, Major; Susann M, Brady-Kalnay;

BCCIP associates with the receptor protein tyrosine phosphatase PTPµ

Abstract

AbstractThe receptor protein tyrosine phosphatase PTPµ belongs to a family of adhesion molecules that contain cell–cell adhesion motifs in their extracellular segments and catalytic domains within their intracellular segments. The ability of PTPµ both to mediate adhesion and exhibit enzymatic activity makes PTPµ an excellent candidate to transduce signals in response to cell–cell adhesion. In an effort to identify downstream signaling partners of PTPµ, we performed a modified yeast two‐hybrid screen using the first tyrosine phosphatase domain of PTPµ as bait. We isolated an interacting clone encoding BRCA2 and CDKN1A interacting protein (BCCIP) from a HeLa cell library. BCCIP is a p21 and BRCA2 interacting protein that has been shown to play roles in both cell cycle arrest and DNA repair. In this manuscript, we confirm the interaction between BCCIP and PTPµ identified in yeast using in vitro biochemical studies and characterize BCCIP as a PTPµ binding protein. We demonstrate that BCCIP is phosphorylated by the Src tyrosine kinase and dephosphorylated by the PTPµ tyrosine phosphatase in vitro. Furthermore, we show that BCCIP is required for both the permissive and repulsive functions of PTPµ in neurite outgrowth assays, suggesting BCCIP and PTPµ are in a common signal transduction pathway. J. Cell. Biochem. 105: 1059–1072, 2008. © 2008 Wiley‐Liss, Inc.

Related Organizations
Keywords

Calcium-Binding Proteins, Receptor-Like Protein Tyrosine Phosphatases, Class 2, Nuclear Proteins, Cell Cycle Proteins, src-Family Kinases, Two-Hybrid System Techniques, Neurites, Humans, Phosphorylation, HeLa Cells, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
bronze