Regulation of Lifespan, Metabolism, and Stress Responses by the Drosophila SH2B Protein, Lnk
Regulation of Lifespan, Metabolism, and Stress Responses by the Drosophila SH2B Protein, Lnk
Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein–protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK) signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the functioning and role of the IIS pathway in ageing and metabolism.
PLoS Genetics, 6 (3)
ISSN:1553-7390
ISSN:1553-7404
- University College London United Kingdom
- ETH Zurich Switzerland
- European Molecular Biology Laboratory Germany
- UNIVERSITY COLLEGE LONDON, Bartlett School of Planning United Kingdom
- European Bioinformatics Institute United Kingdom
Male, Transcription, Genetic, MAP Kinase Signaling System, Longevity, TYROSINE KINASE, QH426-470, DOMAIN, ADAPTER PROTEIN, FAT-BODY, Genetics, Animals, Body Size, Drosophila Proteins, Insulin, DIETARY RESTRICTION, Promoter Regions, Genetic, Adaptor Proteins, Signal Transducing, Sex Characteristics, IDENTIFICATION, PDGF RECEPTOR, C-CBL, Oxidative Stress, Drosophila melanogaster, Fertility, INSULIN-RECEPTOR KINASE, Gene Expression Regulation, Starvation, Mutation, ras Proteins, Female, APS, Research Article, Protein Binding
Male, Transcription, Genetic, MAP Kinase Signaling System, Longevity, TYROSINE KINASE, QH426-470, DOMAIN, ADAPTER PROTEIN, FAT-BODY, Genetics, Animals, Body Size, Drosophila Proteins, Insulin, DIETARY RESTRICTION, Promoter Regions, Genetic, Adaptor Proteins, Signal Transducing, Sex Characteristics, IDENTIFICATION, PDGF RECEPTOR, C-CBL, Oxidative Stress, Drosophila melanogaster, Fertility, INSULIN-RECEPTOR KINASE, Gene Expression Regulation, Starvation, Mutation, ras Proteins, Female, APS, Research Article, Protein Binding
142 Research products, page 1 of 15
- 2006IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).76 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
