Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amino Acidsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Amino Acids
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Amino Acids
Article . 2016
versions View all 2 versions

Spatiotemporal patterning of polyamines in Drosophila development

Authors: Miranda, Burnette; Jeremiah J, Zartman;

Spatiotemporal patterning of polyamines in Drosophila development

Abstract

While several studies have implicated polyamines (PAs) in development, little research has been done in genetically tractable model systems like Drosophila. Here, we integrate transcriptional and metabolic data across Drosophila development, and are the first to show temporal, stage-specific regulation of PA accumulation in embryonic trachea and eye discs using immunohistochemistry. Understanding the regulation driving this accumulation can provide insight into PA metabolism and transport. Our findings suggest that Drosophila has great potential for investigating PAs in developmental biology.

Related Organizations
Keywords

Time Factors, Transcription, Genetic, Spermidine, Gene Expression Profiling, Green Fluorescent Proteins, Computational Biology, Gene Expression Regulation, Developmental, Immunohistochemistry, Trachea, Drosophila melanogaster, Polyamines, Animals, Photoreceptor Cells, Invertebrate, Spermine, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average