Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Shh and Gli3 activities are required for timely generation of motor neuron progenitors

Authors: Oh, SaeOck; Huang, Xi; Liu, Jiang; Litingtung, Ying; Chiang, Chin;

Shh and Gli3 activities are required for timely generation of motor neuron progenitors

Abstract

Generation of distinct ventral neuronal subtypes in the developing spinal cord requires Shh signaling mediated by the Gli family of transcription factors. Genetic studies of Shh(-/-);Gli3(-/-) double mutants indicated that the inhibition of Gli3 repressor activity by Shh is sufficient for the generation of different neurons including motor neurons. In this study, we show that although ventral neural progenitors are initiated in normal numbers in Shh(-/-);Gli3(-/-) mutants, the subsequent appearance of motor neuron progenitors shows a approximately 20-hour lag, concomitant with a delay in the activation of a pan-neuronal differentiation program and cell cycle exit of ventral neural progenitors. Accordingly, the Shh(-/-);Gli3(-/-) mutant spinal cord exhibits a delay in motor neuron differentiation and an accumulation of a ventral neural progenitor pool. The requirement of Shh and Gli3 activities to promote the timely appearance of motor neuron progenitors is further supported by the analysis of Ptch1(-/-) mutants, in which constitutive Shh pathway activity is sufficient to elicit ectopic and premature differentiation of motor neurons at the expense of ventral neural progenitors. Taken together, our analysis suggests that, beyond its well established dorso-ventral patterning function through a Gli3-derepression mechanism, Shh signaling is additionally required to promote the timely appearance of motor neuron progenitors in the developing spinal cord.

Related Organizations
Keywords

Patched Receptors, Neurogenesis, Kruppel-Like Transcription Factors, Nerve Tissue Proteins, Receptors, Cell Surface, Gli3, Shh, Mice, Zinc Finger Protein Gli3, Animals, Hedgehog Proteins, Molecular Biology, Motor neurons, Body Patterning, Motor Neurons, Spinal cord, Stem Cells, Cell Biology, Neural progenitors, Mice, Mutant Strains, Patched-1 Receptor, Spinal Cord, Olig2, Mutation, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%
hybrid