Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Human Repr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Human Reproduction
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Cyclic changes and hormonal regulation of annexin IV mRNA and protein in human endometrium

Authors: Anna Prasanthi Ponnampalam; Peter Rogers;

Cyclic changes and hormonal regulation of annexin IV mRNA and protein in human endometrium

Abstract

Annexin IV (ANXA4) belongs to a ubiquitous family of Ca(2+)-dependent phospholipid-binding proteins. ANXA4 has been shown to be involved in a range of physiological functions including ion channel regulation, exocytosis and Ca(2+)-dependent signal transduction. The aims of this study were to fully characterize ANXA4 mRNA and protein in human endometrium during the menstrual cycle and to investigate the hormonal regulation of ANXA4. ANXA4 mRNA expression was quantified by real-time PCR in fresh endometrial tissue from cycling women, and protein expression was analysed by immunohistochemistry and western blotting. Hormonal regulation of ANXA4 transcription and translation was investigated using an endometrial explant system. ANXA4 mRNA was significantly up-regulated during mid-secretory (MS) and late-secretory (LS) phases compared with proliferative phases during the menstrual cycle. ANXA4 protein was localized to glandular and luminal epithelium and was present in high levels throughout the menstrual cycle except during early-secretory (ES) phase, when it was significantly reduced. Our data also show that, in proliferative explants, progesterone significantly increased the ANXA4 mRNA and protein after 48h in culture. Estrogen did not have any significant effects. This is the first study to show that ANXA4 transcription and translation are regulated by progesterone and suggests that ANXA4 may be important in regulating ion and water transport across the endometrial epithelium.

Keywords

Adult, Ion Transport, Adolescent, Estradiol, Transcription, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Middle Aged, Epithelium, Endometrium, Organ Culture Techniques, Body Water, Computer Systems, Protein Biosynthesis, Humans, Female, RNA, Messenger, Annexin A4, Menstrual Cycle, Progesterone

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Average
bronze