Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 1993 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

DNA sequence requirement of a TATA element-binding protein from Arabidopsis for transcription in vitro

Authors: F, Mukumoto; S, Hirose; H, Imaseki; K, Yamazaki;

DNA sequence requirement of a TATA element-binding protein from Arabidopsis for transcription in vitro

Abstract

We have analyzed the DNA sequence requirements for the functioning of TATA elements by examining the transcriptional activities associated with 24 promoters, including representatives of each of the 21 point mutations in the consensus sequence from plants, TATATATA, in a HeLa in vitro system and in a chimeric in vitro system in which human TATA-binding protein (hTBP) was replaced by purified TBP of Arabidopsis (aTBP-1). Although the relative transcriptional activities varied among these promoters, both systems gave virtually identical results. Among the mutant TATA elements, those with the sequences TAGAGATA and GAGAGAGA had undetectable activity. The rest had activities that ranged from 7% to 130% of the activity associated with the consensus element. These results suggest the functional conservation of TBP between plants and animals.

Keywords

Base Sequence, Transcription, Genetic, Molecular Sequence Data, Arabidopsis, TATA-Box Binding Protein, DNA-Binding Proteins, Structure-Activity Relationship, Gene Expression Regulation, Humans, Promoter Regions, Genetic, Plant Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%