Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex

Authors: Hoppeler-Lebel, Aurélie; Celati, Claude; Bellett, Gemma; Mogensen, Mette M.; Klein-Hitpass, Ludger; Bornens, Michel; Tassin, Anne-Marie;

Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex

Abstract

A comprehensive model of how the centrosome organises the microtubule network in animal cells has not yet been elucidated. Here we show that the centrosomal large CAP-Gly protein CAP350 is not only present at the centrosome, but is also present as numerous dots in the pericentrosomal area. Using in vitro and in vivo expression of partial constructs, we demonstrated that CAP350 binds microtubules through an N-terminal basic region rather than through its CAP-Gly domain. CAP-Gly-containing domains of CAP350 are targeted not only to the centrosome but also to a Golgi-like network. Interestingly, full-length GFP-tagged CAP350 bound preferentially to microtubules in the pericentrosomal area. These results indicate that the large CAP350 protein has a dual binding ability. Overexpression of CAP350 promoted an increase in the stability of the whole microtubule network, as judged by a significant decrease in the number of EB1 comets and by an enhanced microtubule resistance to Nocodazole treatment. In support of this, CAP350 depletion decreased microtubule stability. Moreover, both depletion and overexpression of CAP350 induced specific fragmentation of the Golgi complex while maintaining a juxtanuclear localisation. We propose that CAP350 specifically stabilises Golgi-associated microtubules and in this way participates in the maintenance of a continuous pericentrosomal Golgi ribbon.

Keywords

Centrosome, Nocodazole, Drug Resistance, Gene Expression, Golgi Apparatus, Nuclear Proteins, Antineoplastic Agents, Microtubules, Protein Structure, Tertiary, Dogs, Microtubule Proteins, Animals, Humans, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
bronze