Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Compa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Sexual dimorphism and developmental expression of signal‐transduction machinery in the vomeronasal organ

Authors: F A, Murphy; K, Tucker; D A, Fadool;

Sexual dimorphism and developmental expression of signal‐transduction machinery in the vomeronasal organ

Abstract

AbstractWe have explored the use of a new model to study the transduction of chemosignals in the vomeronasal organ (VNO), for which the functional pathway for chemical communication is incompletely understood. Because putative vomeronasal receptors in mammalian and other vertebrate models belong to the superfamily of G‐protein‐coupled receptors, the objective of the present study was to define which G‐protein subunits were present in the VNO of Sternotherus odoratus (stinkpot or musk turtle) in order to provide directionality for future functional studies of the downstream signaling cascades. The turtle vomeronasal epithelium (VNE) was found to contain the G‐proteins Gβ and Gαil–3 at the microvillar layer, the presumed site of signal tranduction in these neurons, as evidenced by immunocytochemical techniques. Gαo labeled the axon bundles in the VNE and the somata of the vomeronasal sensory neurons but not the microvillar layer. Densitometric analysis of Western blots indicated that the VNO from females contained greater concentrations of Gαi1–3 compared with males. Sexually immature (juvenile) turtles showed intense immunolabeling for all three subunits (Gβ, Gαi1–3, and Gαo) in the axon bundles and an absence of labeling in the microvillar layer. Another putative signaling component found in the microvilli of mammalian VNO, transient receptor potential channel, was also immunoreactive in S. odoratus in a gender‐specific manner, as quantified by Western blot analysis. These data demonstrate the utility of Sternotherus for discerning the functional signal transduction machinery in the VNO and may suggest that gender and developmental differences in effector proteins or cellular signaling components may be used to activate sex‐specific behaviors. J. Comp. Neurol. 432:61–74, 2001. © 2001 Wiley‐Liss, Inc.

Related Organizations
Keywords

Male, Aging, Sex Characteristics, Molecular Sequence Data, Peptide Fragments, Rats, Turtles, Olfactory Mucosa, Species Specificity, GTP-Binding Proteins, Animals, Female, Amino Acid Sequence, Sexual Maturation, Vomeronasal Organ, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
bronze