Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2005 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions

Identification and Characterization of a Novel Retroviral-Like Aspartic Protease Specifically Expressed in Human Epidermis

Authors: Bernard, D.; Méhul, B.; Thomas-Collignon, A.; Delattre, C.; Donovan, M.; Schmidt, R.;

Identification and Characterization of a Novel Retroviral-Like Aspartic Protease Specifically Expressed in Human Epidermis

Abstract

Proteases play a pivotal role in epidermal differentiation and desquamation. Separation of a total protein extract from human reconstructed epidermis by two-dimensional gel electrophoresis and subsequent peptide analysis of a specific protein spot identified a new protein exhibiting similarities with the retroviral aspartic protease family. Cloning of the corresponding full-length cDNA revealed an open reading frame encoding for a new protease of 343 amino acids, containing a putative aspartic protease catalytic domain. We named this protein Skin ASpartic Protease (SASPase). RT-PCR and northern blot analysis of various human tissues revealed that SASPase was specifically expressed within the epidermis. Immunohistochemical analysis showed a particularly intense expression restricted to the granular layers, whereas in diseased skin, its expression was changed. Western blot analysis, using a monoclonal antibody, revealed the expression of two forms of the enzyme: a 28 kDa putative proform and the active 14 kDa form. Recombinant truncated SASPase (SASP28) was generated from a prokaryotic expression system in Escherichia coli as a fusion protein with GST. SASP28 degraded insulin and to a lesser extent casein with a pH optimum of 5. As seen for retroviral proteases, an auto-activation processing was evidenced, generating a 14 kDa protein (SASP14). Site-directed mutagenesis inhibited auto-activation of the enzyme. Indinavir, a potent HIV protease inhibitor used in AIDS therapy, had a significant inhibitory effect on rSASPase auto-activation, which could explain its side effects on skin.

Related Organizations
Keywords

skin, Base Sequence, HIV protease inhibitors, Molecular Sequence Data, Indinavir, HIV Protease Inhibitors, Gene Expression Regulation, Enzymologic, Protein Structure, Tertiary, Enzyme Activation, proteomics, Retroviridae, retropepsin, epidermis, Aspartic Acid Endopeptidases, Humans, proteases, Amino Acid Sequence, RNA, Messenger, Epidermis, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
hybrid