Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2011
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Blockade of Permeation by Potassium but Normal Gating of the G628S Nonconducting hERG Channel Mutant

Authors: Ping Yu Xiong; Christopher A. Ahern; Zeineb Es-Salah-Lamoureux; Samuel J. Goodchild; David Fedida;

Blockade of Permeation by Potassium but Normal Gating of the G628S Nonconducting hERG Channel Mutant

Abstract

G628S is a mutation in the signature sequence that forms the selectivity filter of the human ether-a-go-go-related gene (hERG) channel (GFG) and is associated with long-QT2 syndrome. G628S channels are known to have a dominant-negative effect on hERG currents, and the mutant is therefore thought to be nonfunctional. This study aims to assess the physiological mechanism that prevents the surface-expressing G628S channels from conducting ions. We used voltage-clamp fluorimetry along with two-microelectrode voltage clamping in Xenopus oocytes to confirm that the channels express well at the surface, and to show that they are actually functional, with activation kinetics comparable to that of wild-type, and that the mutation leads to a reduced selectivity to potassium. Although ionic currents are not detected in physiological solutions, removing extracellular K(+) results in the appearance of an inward Na(+)-dependent current. Using whole-cell patch clamp in mammalian transfected cells, we demonstrate that the G628S channels conduct Na(+), but that this can be blocked by both intracellular and higher-than-physiological extracellular K(+). Using solutions devoid of K(+) allows the appearance of nA-sized Na(+) currents with activation and inactivation gating analogous to wild-type channels. The G628S channels are functionally conducting but are normally blocked by intracellular K(+).

Related Organizations
Keywords

Models, Molecular, ERG1 Potassium Channel, Protein Conformation, Xenopus, Sodium, Biophysics, Electric Conductivity, Intracellular Space, Ether-A-Go-Go Potassium Channels, Permeability, Kinetics, HEK293 Cells, Mutation, Oocytes, Potassium, Animals, Humans, Mutant Proteins, Amino Acid Sequence, Ion Channel Gating

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
hybrid