Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Diabetes ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Diabetes Research
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Diabetes Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Diabetes Research
Article . 2021
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Adenosine A1 Receptor Deficiency Aggravates Extracellular Matrix Accumulation in Diabetic Nephropathy through Disturbance of Peritubular Microenvironment

Authors: Dongli Tian; Jiaying Li; Linfeng Zou; Min Lin; Xiaoxiao Shi; Yuting Hu; Jiaxin Lang; +4 Authors

Adenosine A1 Receptor Deficiency Aggravates Extracellular Matrix Accumulation in Diabetic Nephropathy through Disturbance of Peritubular Microenvironment

Abstract

Background. We previously observed that adenosine A1 receptor (A1AR) had a protective role in proximal tubular megalin loss associated with albuminuria in diabetic nephropathy (DN). In this study, we aimed to explore the role of A1AR in the fibrosis progression of DN. Methods. We collected DN patients’ samples and established a streptozotocin-induced diabetes model in wild-type (WT) and A1AR-deficient (A1AR-/-) mice. The location and expression of CD34, PDGFRβ, and A1AR were detected in kidney tissue samples from DN patients by immunofluorescent and immunohistochemical staining. We also analyzed the expression of TGFβ, collagen (I, III, and IV), α-SMA, and PDGFRβ using immunohistochemistry in WT and A1AR-/- mice. CD34 and podoplanin expression were analyzed by Western blotting and immunohistochemical staining in mice, respectively. Human renal proximal tubular epithelial cells (HK2) were cultured in medium containing high glucose and A1AR agonist as well as antagonist. Results. In DN patients, the expression of PDGFRβ was higher with the loss of CD34. The location of PDGFRβ and TGFβ was near to each other. The A1AR, which was colocalized with CD34 partly, was also upregulated in DN patients. In WT-DN mice, obvious albuminuria and renal pathological leisure were observed. In A1AR-/- DN mice, more severe renal tubular interstitial fibrosis and more extracellular matrix deposition were observed, with lower CD34 expression and pronounced increase of PDGFRβ. In HK2 cells, high glucose stimulated the epithelial-mesenchymal transition (EMT) process, which was inhibited by A1AR agonist. Conclusion. A1AR played a critical role in protecting the tubulointerstitial fibrosis process in DN by regulation of the peritubular microenvironment.

Related Organizations
Keywords

Mice, Knockout, Receptor, Adenosine A1, Antigens, CD34, RC648-665, Fibrosis, Diseases of the endocrine glands. Clinical endocrinology, Cell Line, Diabetes Mellitus, Experimental, Extracellular Matrix, Kidney Tubules, Proximal, Receptor, Platelet-Derived Growth Factor beta, Mice, Kidney Tubules, Cellular Microenvironment, Transforming Growth Factor beta, Animals, Humans, Diabetic Nephropathies, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold