Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DNA Repairarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DNA Repair
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DNA Repair
Article . 2008
versions View all 2 versions

APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation

Authors: Chloe J, Macrae; Richard D, McCulloch; Jarkko, Ylanko; Daniel, Durocher; C Anne, Koch;

APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation

Abstract

Nonhomologous end-joining (NHEJ) is the major mammalian DNA double-strand break (DSB) repair pathway of DSBs induced by DNA damaging agents. NHEJ is initiated by the recognition of DSBs by the DNA end-binding heterodimer, Ku, and the final step of DNA end-joining is accomplished by the XRCC4-DNA ligase IV complex. We demonstrate that Aprataxin and PNK-like factor (APLF), an endo/exonuclease with an FHA domain and unique zinc fingers (ZFs), interacts with both Ku and XRCC4-DNA ligase IV in human cells. The interaction of APLF with XRCC4-DNA ligase IV is FHA- and phospho-dependent, and is mediated by CK2 phosphorylation of XRCC4 in vitro. In contrast, APLF associates with Ku independently of the FHA and ZF domains, and APLF complexes with Ku at DNA ends. APLF undergoes ionizing radiation (IR) induced ATM-dependent hyperphosphorylation at serine residue 116, which is highly conserved across mammalian APLF homologues. We demonstrate further that depletion of APLF in human cells by siRNA is associated with impaired NHEJ. Collectively, these results suggest that APLF is an ATM target that is involved in NHEJ and facilitates DSB repair, likely via interactions with Ku and XRCC4-DNA ligase IV.

Keywords

Base Sequence, DNA Repair, Immunoblotting, Molecular Sequence Data, DNA Helicases, Cell Cycle Proteins, Electrophoretic Mobility Shift Assay, Ataxia Telangiectasia Mutated Proteins, Phosphoproteins, Cell Line, DNA-Binding Proteins, Microscopy, Fluorescence, DNA-(Apurinic or Apyrimidinic Site) Lyase, Humans, Immunoprecipitation, DNA Breaks, Double-Stranded, Amino Acid Sequence, Phosphorylation, Poly-ADP-Ribose Binding Proteins, Ku Autoantigen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%