Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of East A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2003 . Peer-reviewed
Data sources: Crossref
Development
Article . 2003
versions View all 4 versions

Pax1 and Pax9 activateBapx1to induce chondrogenic differentiation in the sclerotome

Authors: Rodrigo, Isabel; Hill, Robert E.; Balling, Rudi; Munsterberg, Andrea; Imai, Kenji;

Pax1 and Pax9 activateBapx1to induce chondrogenic differentiation in the sclerotome

Abstract

We have previously shown that the paired-box transcription factors Pax1 and Pax9 synergistically act in the proper formation of the vertebral column. Nevertheless, downstream events of the Pax1/Pax9 action and their target genes remain to be elucidated. We show, by analyzing Pax1;Pax9 double mutant mice, that expression of Bapx1 in the sclerotome requires the presence of Pax1 and Pax9, in a gene dose-dependent manner. By using a retroviral system to overexpress Pax1 in chick presomitic mesoderm explants, we show that Pax1 can substitute for Shh in inducing Bapx1expression and in initiating chondrogenic differentiation. Furthermore, we demonstrate that Pax1 and Pax9 can transactivate regulatory sequences in theBapx1 promoter and that they physically interact with theBapx1 promoter region. These results strongly suggest thatBapx1 is a direct target of Pax1 and Pax9. Together, we conclude that Pax1 and Pax9 are required and sufficient for the chondrogenic differentiation of sclerotomal cells.

Countries
Germany, United Kingdom
Keywords

Homeodomain Proteins, Base Sequence, Molecular Sequence Data, Gene Expression Regulation, Developmental, Chick Embryo, DNA, Models, Biological, Mice, Mutant Strains, Spine, DNA-Binding Proteins, Mice, Trans-Activators, Animals, Paired Box Transcription Factors, Hedgehog Proteins, PAX9 Transcription Factor, Promoter Regions, Genetic, Pax1; Pax9; Bapx1; Shh; Sclerotome; Chondrogenesis, Chondrogenesis, In Situ Hybridization, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    128
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
128
Top 10%
Top 10%
Top 10%
Green
bronze