Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurochemical Resear...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurochemical Research
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Cell-Specific mRNA Alterations in Na+, K+-ATPase α and β Isoforms and FXYD in Mice Treated Chronically with Carbamazepine, an Anti-Bipolar Drug

Authors: Baoman, Li; Leif, Hertz; Liang, Peng;

Cell-Specific mRNA Alterations in Na+, K+-ATPase α and β Isoforms and FXYD in Mice Treated Chronically with Carbamazepine, an Anti-Bipolar Drug

Abstract

Evidence accumulating during almost 50 years suggests Na(+), K(+)-ATPase dysfunction in bipolar disorder, a disease treatable with chronic administration of lithium salts, carbamazepine or valproic acid. Three Na(+), K(+)-ATPase α subunits (α1-3) and two β subunits (β1 and β2) are expressed in brain together with the auxiliary protein FXYD7. FXYD7 decreases K(+) affinity, and thus contributes to stimulation of the enzyme at elevated extracellular K(+) concentrations. Na(+), K(+)-ATPase subtype and FXYD7 genes were determined by RT-PCR in mice co-expressing one fluorescent signal with an astrocytic marker or a different fluorescent signal with a neuronal marker and treated for 14 days with carbamazepine. Following fluorescence-activated cell sorting of neurons and astrocytes it was shown that α2 Expression was upregulated in astrocytes and neurons and α1 selectively in neurons, but α3 was unchanged. β1 was upregulated in astrocytes, but not in neurons. β2 was unaffected in astrocytes and absent in neurons. FXYD7 was downregulated specifically in neurons. According to cited literature data these changes should facilitate K(+) uptake in neurons, without compromising preferential uptake in astrocytes at increased extracellular K(+) concentrations. This process seems to be important for K(+) homeostasis of the cellular level of the brain (Xu et al. Neurochem Res E-pub Dec. 12, 2012).

Related Organizations
Keywords

Male, Neurons, Bipolar Disorder, Membrane Glycoproteins, Nerve Tissue Proteins, Isoenzymes, Mice, Carbamazepine, Astrocytes, Animals, Female, RNA, Messenger, Sodium-Potassium-Exchanging ATPase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Average
Top 10%