Regulation of Human Epidermal Melanocyte Biology By β-Endorphin
pmid: 12787137
Regulation of Human Epidermal Melanocyte Biology By β-Endorphin
beta-Endorphin is an opioid peptide cleaved from the precursor pro-hormone pro-opiomelanocortin, from which other peptides such as adrenocorticotropic hormone, beta-lipotropic hormone, and alpha-melanocyte-stimulating hormone are also derived. alpha-Melanocyte-stimulating hormone and adrenocorticotropic hormone are well documented to regulate human skin pigmentation via action at the melanocortin-1 receptor. Whereas plasma beta-endorphin is reported to increase after exposure to ultraviolet radiation, to date a functional role for beta-endorphin in the regulation of human epidermal melanocyte biology has not been demonstrated. This study was designed to examine the involvement of the beta-endorphin/mu-opiate receptor system in human epidermal melanocytes. To address this question we employed reverse transcription-polymerase chain reaction, and immunohistochemistry/cytochemistry and immunoelectron microscopy using beta-endorphin and mu-opiate receptor specific antibodies. A functional role for beta-endorphin was assessed in epidermal melanocyte cultures by direct stimulation with the peptide. This study demonstrated the expression of mu-opiate receptor mRNA in cultured epidermal melanocytes, as well as mRNA for pro-opiomelanocortin. In addition, we have shown that beta-endorphin and mu-opiate receptor are expressed at the protein level in situ in glycoprotein100-positive melanocytes. The expression of both beta-endorphin and mu-opiate receptor correlated positively with their differentiation status in vitro. Furthermore, immunoelectron microscopy studies revealed an association of beta-endorphin with melanosomes. Functional studies showed that beta-endorphin has potent melanogenic, mitogenic, and dendritogenic effects in cultured epidermal melanocytes deprived of any exogenous supply of pro-opiomelanocortin peptides. Thus, we report that human epidermal melanocytes express a fully functioning beta-endorphin/mu-opiate receptor system. In the absence of any data showing cross-talk between the mu-opiate receptor and the melanocortin-1 receptor, we conclude that the beta-endorphin/mu-opiate receptor system participates in the regulation of skin pigmentation.
- Procter & Gamble (United States) United States
- University of Bradford United Kingdom
melanogenesis, proopiomelanocortin, Keratinocytes, skin, Pro-Opiomelanocortin, Receptors, Opioid, mu, Dermatology, Biochemistry, Humans, Tissue Distribution, RNA, Messenger, Molecular Biology, Cells, Cultured, Melanins, Melanosomes, μ-opiate receptor, beta-Endorphin, Cell Biology, Dendrites, Epidermal Cells, dendricity, Melanocytes, Cell Division
melanogenesis, proopiomelanocortin, Keratinocytes, skin, Pro-Opiomelanocortin, Receptors, Opioid, mu, Dermatology, Biochemistry, Humans, Tissue Distribution, RNA, Messenger, Molecular Biology, Cells, Cultured, Melanins, Melanosomes, μ-opiate receptor, beta-Endorphin, Cell Biology, Dendrites, Epidermal Cells, dendricity, Melanocytes, Cell Division
21 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).122 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
