Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Biochemica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Biochemical Sciences
Article . 1994 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Translational control of GCN4: an in vivo barometer of initiation-factor activity

Authors: A G, Hinnebusch;

Translational control of GCN4: an in vivo barometer of initiation-factor activity

Abstract

Phosphorylation of translation initiation factor-2 (eIF-2) is an adaptive mechanism for downregulating protein synthesis under conditions of starvation and stress. The yeast Saccharomyces has evolved a sophisticated means of increasing translation of GCN4 mRNA when eIF-2 is phosphorylated, allowing the induction of an important stress-response protein when expression of most other genes is decreasing. Because translation of GCN4 mRNA is so tightly coupled to eIF-2 activity, genetic analysis of this system has provided unexpected insights into the regulation of eIF-2 and its guanine nucleotide exchange factor, eIF-2B.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Eukaryotic Initiation Factor-2, Saccharomyces cerevisiae, DNA-Binding Proteins, Fungal Proteins, Gene Expression Regulation, Fungal, Protein Biosynthesis, Amino Acids, Phosphorylation, Protein Kinases, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    182
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
182
Top 10%
Top 1%
Top 1%