Identification of a Novel Human LAP1 Isoform That Is Regulated by Protein Phosphorylation
Identification of a Novel Human LAP1 Isoform That Is Regulated by Protein Phosphorylation
Lamina associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that is ubiquitously expressed. LAP1 binds to lamins and chromatin, probably contributing to the maintenance of the nuclear envelope architecture. Moreover, LAP1 also interacts with torsinA and emerin, proteins involved in DYT1 dystonia and X-linked Emery-Dreifuss muscular dystrophy disorder, respectively. Given its relevance to human pathological conditions, it is important to better understand the functional diversity of LAP1 proteins. In rat, the LAP1 gene (TOR1AIP1) undergoes alternative splicing to originate three LAP1 isoforms (LAP1A, B and C). However, it remains unclear if the same occurs with the human TOR1AIP1 gene, since only the LAP1B isoform had thus far been identified in human cells. In silico analysis suggested that, across different species, potential new LAP1 isoforms could be generated by alternative splicing. Using shRNA to induce LAP1 knockdown and HPLC-mass spectrometry analysis the presence of two isoforms in human cells was described and validated: LAP1B and LAP1C; the latter is putatively N-terminal truncated. LAP1B and LAP1C expression profiles appear to be dependent on the specific tissues analyzed and in cultured cells LAP1C was the major isoform detected. Moreover, LAP1B and LAP1C expression increased during neuronal maturation, suggesting that LAP1 is relevant in this process. Both isoforms were found to be post-translationally modified by phosphorylation and methionine oxidation and two LAP1B/LAP1C residues were shown to be dephosphorylated by PP1. This study permitted the identification of the novel human LAP1C isoform and partially unraveled the molecular basis of LAP1 regulation.
- Ruhr University Bochum Germany
- University of Aveiro Portugal
- University of Aveiro Portugal
- Centro de Neurociências e Biologia Celular Portugal
Science, Q, R, Dystonia Musculorum Deformans, HSC70 Heat-Shock Proteins, Genomics, Muscular Dystrophy, Emery-Dreifuss, Rats, Alternative Splicing, Methionine, Gene Expression Regulation, Medicine, Animals, Humans, Protein Isoforms, RNA, Messenger, Phosphorylation, Protein Processing, Post-Translational, Sequence Alignment, Research Article
Science, Q, R, Dystonia Musculorum Deformans, HSC70 Heat-Shock Proteins, Genomics, Muscular Dystrophy, Emery-Dreifuss, Rats, Alternative Splicing, Methionine, Gene Expression Regulation, Medicine, Animals, Humans, Protein Isoforms, RNA, Messenger, Phosphorylation, Protein Processing, Post-Translational, Sequence Alignment, Research Article
17 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2021IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2018IsRelatedTo
- 2023IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
