Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Pharmaco...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2009
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling

Authors: Kelly Verhelst; Rudi Beyaert; Isabelle Carpentier; Lynn Verstrepen;

ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling

Abstract

ABINs have been described as three different proteins (ABIN-1, ABIN-2, ABIN-3) that bind the ubiquitin-editing nuclear factor-kappaB (NF-kappaB) inhibitor protein A20 and which show limited sequence homology. Overexpression of ABINs inhibits NF-kappaB activation by tumor necrosis factor (TNF) and several other stimuli. Similar to A20, ABIN-1 and ABIN-3 expression is NF-kappaB dependent, implicating a potential role for the A20/ABIN complex in the negative feedback regulation of NF-kappaB activation. Adenoviral gene transfer of ABIN-1 has been shown to reduce NF-kappaB activation in mouse liver and lungs. However, ABIN-1 as well as ABIN-2 deficient mice exhibit only slightly increased or normal NF-kappaB activation, respectively, possibly reflecting redundant NF-kappaB inhibitory activities of multiple ABINs. Other functions of ABINs might be non-redundant. For example, ABIN-1 shares with A20 the ability to inhibit TNF-induced apoptosis and as a result ABIN-1 deficient mice die during embryogenesis due to TNF-dependent fetal liver apoptosis. On the other hand, ABIN-2 is required for optimal TPL-2 dependent extracellularly regulated kinase activation in macrophages treated with TNF or Toll-like receptor ligands. ABINs have recently been shown to contain an ubiquitin-binding domain that is essential for their NF-kappaB inhibitory and anti-apoptotic activities. In this context, ABINs were proposed to function as adaptors between ubiquitinated proteins and other regulatory proteins. Alternatively, ABINs might disrupt signaling complexes by competing with other ubiquitin-binding proteins for the binding to specific ubiquitinated targets. Altogether, these findings implicate an important role for ABINs in the regulation of immunity and tissue homeostasis.

Related Organizations
Keywords

Inflammation, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, NF-kappa B, Nuclear Proteins, Proteins, Apoptosis, NF-κB, DNA-Binding Proteins, A20, Animals, Humans, Amino Acid Sequence, Apoptosis Regulatory Proteins, Tumor Necrosis Factor alpha-Induced Protein 3, ABIN, Adaptor Proteins, Signal Transducing, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    165
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
165
Top 10%
Top 10%
Top 1%
Green
bronze