Differential regulation of neuronal excitability by nicotine and substance P in subdivisions of the medial habenula
Differential regulation of neuronal excitability by nicotine and substance P in subdivisions of the medial habenula
The medial habenula (MHb) plays an important role in nicotine-related behaviors, such as aversion and withdrawal. The MHb is composed of distinct subregions with unique neurotransmitter expression and neuronal connectivity. Here, we showed that nicotine and substance P (SP) differentially regulate neuronal excitability in subdivisions of the MHb (ventrolateral division, MHbVL; dorsal division; MHbD and superior division: MHbS). Nicotine remarkably increased spontaneous neuronal firing in the MHbVL and MHbD, but not in the MHbS, which was consistent with different magnitudes of whole-cell inward currents evoked by nicotine in each subdivision. Meanwhile, SP enhanced neuronal excitability in the MHbVL and MHbS. Although the MHbD is composed of SP-expressing neurons, they did not respond to SP. Neurons in the MHbVL increased their firing in response to bath-applied nicotine, which was attenuated by neurokinin receptor antagonists. Furthermore, nicotine addiction and withdrawal attenuated and augmented excitatory SP effects in the MHbVL, respectively. On the whole, we suggest that MHb-involving nicotine-related behaviors might be associated with SP signaling in MHb subdivisions.
- Sejong University Korea (Republic of)
- Department of Biology United States
- Kyung Hee University Korea (Republic of)
- Department of Biology Switzerland
- KYUNG HEE UNIVERSITY
Medicine (General), R5-920, withdrawal, QH301-705.5, substance P, Medial habenula, addiction, Articles, Biology (General), nicotine
Medicine (General), R5-920, withdrawal, QH301-705.5, substance P, Medial habenula, addiction, Articles, Biology (General), nicotine
1 Research products, page 1 of 1
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
