Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt

Authors: Yong J, Lee; Young K, Song; Jae J, Song; R Rita, Siervo-Sassi; Hyeong-Reh C, Kim; Ling, Li; Douglas R, Spitz; +2 Authors

Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt

Abstract

We investigated the role of galectin-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic death in human breast carcinoma BT549 cells. We observed that parental galectin-3 null BT549 cells (BT549(par)) as well as control vector transfected (BT549(neo)) cells were resistant to TRAIL, while galectin-3 cDNA-transfected BT549 cells (BT549(gal-3)) were sensitive to TRAIL. Data from flow cytometry and immunoblotting analyses reveal that reconstitution of galectin-3 promoted cell death and PARP cleavage as well as caspase (-8, -9, and -3) activation during TRAIL treatment. However, unlike TRAIL treatment, galectin-3 transfectants were resistant to UV-B-induced PARP cleavage. Data from cDNA array analysis show that galectin-3 did not significantly enhance or reduce any apoptosis-related gene expression. Moreover, although galectin-3 restored pre-mRNA splicing activity and resulted in elevation of FLIPs protein, experiments with FLIPs cDNA-transfected cells show that overexpression of FLIPs did not sensitize cells to TRAIL. Interestingly, BT549(gal-3) cells demonstrated a approximately 2-fold increase in total glutathione content as well as a approximately 5-fold increase in GSSG content in comparison to BT549(par) and BT549(neo) cells, suggesting that galectin-3 overexpression may alter intraceullular oxidation/reduction reactions affecting the metabolism of glutathione and other thiols. In addition, galectin-3 overexpression inactivated Akt by dephosphorylation. Finally, overexpression of constitutively activated Akt protected BT549(gal-3) cells from TRAIL-induced cytotoxicity. Taken together, our data suggest that galectin-3-enhanced TRAIL-induced cytotoxicity is mediated through dephosphorylation of Akt, possibly through a redox-dependent process.

Keywords

Galectin 3/physiology*, Membrane Glycoproteins/pharmacology*, 570, Galectin 3, 610, Apoptosis, Apoptosis/drug effects*, Protein Serine-Threonine Kinases, Transfection, Protein-Serine-Threonine Kinases*, TNF-Related Apoptosis-Inducing Ligand, FLIPs, Tumor Necrosis Factor-alpha/pharmacology*, Glutathione/analysis, Proto-Oncogene Proteins, Tumor Cells, Cultured, Galectin-3, Humans, Proto-Oncogene Proteins/metabolism*, Phosphorylation, Glutathione/metabolism*, Galectin 3/genetics, Poly(ADP-ribose) Polymerases/metabolism, Cultured, Membrane Glycoproteins, poptosis, Tumor Necrosis Factor-alpha, Caspases/metabolism, Akt, Glutathione, Galectin 3/metabolism, Tumor Cells, Gene Expression Regulation, TRAILA, Caspases, Poly(ADP-ribose) Polymerases, Apoptosis Regulatory Proteins, Proto-Oncogene Proteins c-akt, cDNA array

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green