Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate

Authors: Noboru Mizushima; Akiko Kuma; Yoshinori Kobayashi; Akitsugu Yamamoto; Masami Matsubae; Toshifumi Takao; Tohru Natsume; +2 Authors

Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate

Abstract

Macroautophagy is the major intracellular degradation system delivering cytoplasmic components to the lysosome/vacuole. We have shown that, in yeast and mammalian cells, the Apg12-Apg5 protein conjugate, which is formed by a ubiquitin-like system, is essential for autophagosome formation. In yeast, the Apg12-Apg5 conjugate interacts with a small coiled-coil protein, Apg16, to form a ∼350 kDa multimeric complex. We demonstrate that the mouse Apg12-Apg5 conjugate forms a ∼800 kDa protein complex containing a novel WD-repeat protein. Because the N-terminal region of this novel protein shows homology with yeast Apg16, we have designated it mouse Apg16-like protein(Apg16L). Apg16L, however, has a large C-terminal domain containing seven WD repeats that is absent from yeast Apg16. Apg16L interacts with both Apg5 and additional Apg16L monomers; neither interaction, however, depends on the WD-repeat domain. In conjunction with Apg12-Apg5, Apg16L associates with the autophagic isolation membrane for the duration of autophagosome formation. Because these features are similar to yeast Apg16, we concluded Apg16L is the functional counterpart of the yeast Apg16. We also found that membrane targeting of Apg16L requires Apg5 but not Apg12. Because WD-repeat proteins provide a platform for protein-protein interactions, the ∼800 kDa complex is expected to function in autophagosome formation, further interacting with other proteins in mammalian cells.

Keywords

570, DNA, Complementary, Macromolecular Substances, Molecular Sequence Data, 610, Autophagy-Related Proteins, Histone Deacetylases, Mice, Autophagy, Animals, Humans, Amino Acid Sequence, Microscopy, Immunoelectron, Cells, Cultured, Base Sequence, Membrane Proteins, Intracellular Membranes, Molecular Weight, Carrier Proteins, Co-Repressor Proteins, Autophagy-Related Protein 12, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    679
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
679
Top 0.1%
Top 0.1%
Top 10%
bronze