Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Letters
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

TLS interaction with NMDA R1 splice variant in retinal ganglion cell line RGC-5

Authors: Fulton Wong; Ildasolha Jamari; Toru Takumi; Ristuko Fujii; Yu Wang; Widyawilis Selamat;

TLS interaction with NMDA R1 splice variant in retinal ganglion cell line RGC-5

Abstract

Translocated in liposarcoma (TLS or FUS) is a multifunctional protein component of the heterogenous ribonuclear complex involved in the splicing of pre-mRNA and the export of fully processed mRNA from the nucleus to the cytoplasm. As we determined that TLS was substantially expressed in the adult retina, we investigated the functions of TLS in a rat retinal ganglion cell (RGC) line RGC-5. TLS was found to be associated with N-methyl-d-aspartate (NMDA) receptor 1 (NR1) and myosinVa (MyoVa) in a calcium-dependent manner. We demonstrated that TLS-associated NR1 could be one of the NR1 alternative splice variants, NR1-4, which was predominantly expressed in RGC-5. The degree of colocalization between TLS and NR1 was significantly decreased by depolarization of RGC-5 cells, indicating that the depolarization-induced Ca(2+)-influx triggered a redistribution of NR1 from the TLS-protein complex. These results suggested that TLS might be involved in a calcium-dependent trafficking of specific NR1 splice variants in RGCs.

Keywords

Cerebral Cortex, Retinal Ganglion Cells, Animals, Immunoprecipitation, RNA-Binding Protein FUS, Calcium, Receptors, N-Methyl-D-Aspartate, Retina, Cell Line, Rats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%