Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Cardiova...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Circulation Cardiovascular Genetics
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 12 versions

Identification of the BCAR1-CFDP1-TMEM170A Locus as a Determinant of Carotid Intima-Media Thickness and Coronary Artery Disease Risk

Authors: K. Gertow; B. Sennblad; R. J. Strawbridge; J. Ohrvik; D. Zabaneh; S. Shah; F. Veglia; +55 Authors

Identification of the BCAR1-CFDP1-TMEM170A Locus as a Determinant of Carotid Intima-Media Thickness and Coronary Artery Disease Risk

Abstract

Background— Carotid intima-media thickness (cIMT) is a widely accepted marker of subclinical atherosclerosis. To date, large-scale investigations of genetic determinants of cIMT are sparse. Methods and Results— To identify cIMT-associated genes and genetic variants, a discovery analysis using the Illumina 200K CardioMetabochip was conducted in 3430 subjects with detailed ultrasonographic determinations of cIMT from the IMPROVE (Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events in a High Risk European Population) study. Segment-specific IMT measurements of common carotid, bifurcation, and internal carotid arteries, and composite IMT variables considering the whole carotid tree (IMT mean , IMT max , and IMT mean-max ), were analyzed. A replication stage investigating 42 single-nucleotide polymorphisms for association with common carotid IMT was undertaken in 5 independent European cohorts (total n=11 590). A locus on chromosome 16 (lead single-nucleotide polymorphism rs4888378, intronic in CFDP1 ) was associated with cIMT at significance levels passing multiple testing correction at both stages (array-wide significant discovery P =6.75×10 −7 for IMT max ; replication P =7.24×10 −6 for common cIMT; adjustments for sex, age, and population substructure where applicable; minor allele frequency 0.43 and 0.41, respectively). The protective minor allele was associated with lower carotid plaque score in a replication cohort ( P =0.04, n=2120) and lower coronary artery disease risk in 2 case-control studies of subjects with European ancestry (odds ratio [95% confidence interval] 0.83 [0.77–0.90], P =6.53×10 −6 , n=13 591; and 0.95 [0.92–0.98], P =1.83×10 −4 , n=82 297, respectively). Queries of human biobank data sets revealed associations of rs4888378 with nearby gene expression in vascular tissues (n=126–138). Conclusions— This study identified rs4888378 in the BCAR1-CFDP1-TMEM170A locus as a novel genetic determinant of cIMT and coronary artery disease risk in individuals of European descent.

Keywords

Male, Atherosclerosis; Carotid intima-media thickness; Coronary artery disease; Genetics, Coronary Artery Disease, SUSCEPTIBILITY, Coronary artery disease, Carotid Intima-Media Thickness, Cohort Studies, genetics, Carotid intima-media thickness, CARDIOVASCULAR RISK, Nuclear Proteins, Middle Aged, Phenotype, Female, coronary artery disease, 2716 Genetics (clinical), EMC NIHES-01-64-01, carotid intima-media thickness, 610, WHITEHALL-II, Polymorphism, Single Nucleotide, 2705 Cardiology and Cardiovascular Medicine, 1311 Genetics, Genetics, Humans, Carotid intima-media thickness; genetics; ultrasounds; BCAR1-CFDP1-TMEM170A locus, Genetic Predisposition to Disease, GENOME-WIDE ASSOCIATION, METAANALYSIS, Alleles, Aged, Gene Expression Profiling, Membrane Proteins, Reproducibility of Results, Atherosclerosis, ROTTERDAM, Phosphoproteins, CALCIFICATION, VASCULAR SMOOTH-MUSCLE, Crk-Associated Substrate Protein, MYOCARDIAL-INFARCTION, ATHEROSCLEROSIS, Gene Expression Regulation, Genetic Loci, EMC MM-01-39-09-A, atherosclerosis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
gold