Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1995
versions View all 2 versions

Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo

Authors: M, Frasch;

Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo

Abstract

After gastrulation, progenitor cells of the cardiac, visceral and body wall musculature arise at defined positions within the mesodermal layer of the Drosophila embryo. The regulatory mechanisms underlying this process of pattern formation are largely unknown, although ablation experiments carried out in other insects indicate that inductive influences from ectodermal cells have major roles in embryonic mesoderm differentiation. An early and important event in the regional subdivision of the mesoderm is the restriction of tinman expression to dorsal mesodermal cells. Genetic analysis has shown that this homeobox gene controls the formation of the visceral musculature and the heart from dorsal portions of the mesoderm. We now show that an inductive signal from dorsal ectodermal cells is required for activation of tinman in the underlying mesoderm and present evidence that Decapentaplegic (Dpp), a member of the transforming growth factor-beta superfamily, serves as a signalling molecule in this process. This demonstrates that the spatial expression of dpp in the ectoderm determines which cells of the mesoderm become competent to develop into visceral mesoderm and the heart.

Related Organizations
Keywords

Embryonic Induction, Mesoderm, Viscera, Insect Hormones, Genes, Homeobox, Animals, Drosophila Proteins, Drosophila, Heart

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    412
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
412
Top 10%
Top 1%
Top 0.1%