<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals

doi: 10.1021/jacs.5b07463
pmid: 26305584
A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals
We describe here the construction of a three-dimensional, porous, crystalline framework formed by spherical protein nodes that assemble into a prescribed lattice arrangement through metal-organic linker-directed interactions. The octahedral iron storage enzyme, ferritin, was engineered in its C3 symmetric pores with tripodal Zn coordination sites. Dynamic light scattering and crystallographic studies established that this Zn-ferritin construct could robustly self-assemble into the desired bcc-type crystals upon coordination of a ditopic linker bearing hydroxamic acid functional groups. This system represents the first example of a ternary protein-metal-organic crystalline framework whose formation is fully dependent on each of its three components.
- University of California, San Diego United States
Metals, Protein Conformation, Proteins, Crystallization, Dynamic Light Scattering
Metals, Protein Conformation, Proteins, Crystallization, Dynamic Light Scattering
5 Research products, page 1 of 1
- 2017IsRelatedTo
- 2015IsSupplementTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).178 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%