Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Competitive Promoter Occupancy by Two Yeast Paralogous Transcription Factors Controlling the Multidrug Resistance Phenomenon

Authors: Ancuta, Lucau-Danila; Thierry, Delaveau; Gaëlle, Lelandais; Frédéric, Devaux; Claude, Jacq;

Competitive Promoter Occupancy by Two Yeast Paralogous Transcription Factors Controlling the Multidrug Resistance Phenomenon

Abstract

Highly flexible gene expression programs are required to allow cell growth in the presence of a wide variety of chemicals. We used genome-wide expression analyses coupled with chromatin immunoprecipitation experiments to study the regulatory relationships between two very similar yeast transcription factors involved in the control of the multidrug resistance phenomenon. Yrm1 (Yor172w) is a new zinc finger transcription factor, the overproduction of which decreases the level of transcription of the target genes of Yrr1, a zinc finger transcription factor controlling the expression of several membrane transporter-encoding genes. Surprisingly, the absence of YRR1 releases the transcriptional activity of Yrm1, which then up-regulates 23 genes, 14 of which are also direct target genes of Yrr1. Chromatin immunoprecipitation experiments confirmed that Yrm1 binds to the promoters of the up-regulated genes only in yeast strains from which YRR1 has been deleted. This sophisticated regulatory program can be associated with drug resistance phenotypes of the cell. The program-specific distribution of paired transcription factors throughout the genome may be a general mechanism by which similar transcription factors regulate overlapping gene expression programs in response to chemical stress.

Keywords

Saccharomyces cerevisiae Proteins, Time Factors, Transcription, Genetic, Cell Membrane, Drug Resistance, Zinc Fingers, DNA, Saccharomyces cerevisiae, Blotting, Northern, Models, Biological, Precipitin Tests, Chromatin, Up-Regulation, Mutation, Genome, Fungal, Promoter Regions, Genetic, Alleles, Oligonucleotide Array Sequence Analysis, Plasmids, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
gold