Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2003 . Peer-reviewed
Data sources: Crossref
Development
Article . 2003
versions View all 2 versions

Analysis of cell lineage in two- and four-cell mouse embryos

Authors: Toshihiko, Fujimori; Yoko, Kurotaki; Jun-Ichi, Miyazaki; Yo-Ichi, Nabeshima;

Analysis of cell lineage in two- and four-cell mouse embryos

Abstract

Compared with other animals, the embryos of mammals are considered to have a highly regulative mode of development. However, recent studies have provided a strong correlation between the first cleavage plane and the future axis of the blastocyst, but it is still unclear how the early axes of the preimplantation embryo reflect the future body axes that emerge after implantation. We have carried out lineage tracing during mouse embryogenesis using the Cre-loxP system, which allowed us to analyze cell fates over a long period of development. We used a transgenic mouse strain, CAG-CAT-Z as a reporter line. The descendants of the manipulated blastomere heritably expressβ-galactosidase. We examined the distribution of descendants of a single blastomere in the 8.5-day embryo after labeling at the two-cell and four-cell stages. The derivatives of one blastomere in the two-cell embryo randomly mix with cells originating from the second blastomere in all cell layers examined. Thus we find cells from different blastomeres intermingled and localized randomly along the body axis. The results of labeling experiments performed in the four-cell stage embryo fall into three categories. In the first, the labeled cells were intermingled with non-labeled cells in a manner similar to that seen after labeling at the two-cell stage. In the second, labeled cells were distributed only in the extra-embryonic ectoderm layers. Finally in the third category, labeled cells were seen only in the embryo proper and the extra-embryonic mesoderm. Manipulated embryos analyzed at the blastocyst stage showed localized distribution of the descendants of a single blastomere. These results suggest that incoherent clonal growth and drastic cell mixing occurs in the early mouse embryo after the blastocyst stage. The first cell specification event, i.e., partitioning cell fate between the inner cell mass and trophectoderm, can occur between the two-cell and four-cell stage, yet the cell fate is not determined.

Related Organizations
Keywords

Male, Integrases, Microinjections, Genetic Vectors, Embryonic Development, Mice, Transgenic, beta-Galactosidase, Enzyme Activation, Mice, Viral Proteins, Blastocyst, Genes, Reporter, Pregnancy, Culture Techniques, Animals, Cell Lineage, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 10%
Top 10%
Top 1%
bronze