Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Plant Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Plant Science
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Handling calcium signaling: Arabidopsis CaMs and CMLs

Authors: Elizabeth, McCormack; Yu-Chang, Tsai; Janet, Braam;

Handling calcium signaling: Arabidopsis CaMs and CMLs

Abstract

The Arabidopsis genome harbors seven calmodulin (CAM) and 50 CAM-like (CML) genes that encode potential calcium sensors. The CAMs encode only four protein isoforms. Selective pressure to maintain multiple CAMs indicates nonredundancy. Sequence divergence, even in the EF hand calcium-binding motif, exists among the CMLs and, therefore, divergent functions are likely to have evolved. Expression data recently available from Massively Parallel Signature Sequencing and Genevestigator compilation of microarrays are reviewed. The seven Arabidopsis CAMs are highly and relatively uniformly expressed. Differential expression is evident among the distinct CMLs over developmental stages, in various organs and in response to many different stimuli. In spite of the potential importance in mediating plant calcium signaling, the physiological functions of the Arabidopsis CaMs and CMLs remain largely unknown.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Protein Structure, Secondary, Calmodulin, Protein Isoforms, Amino Acid Sequence, Calcium Signaling, Sequence Alignment, Conserved Sequence, Genome, Plant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    448
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
448
Top 0.1%
Top 1%
Top 10%