Handling calcium signaling: Arabidopsis CaMs and CMLs
pmid: 16023399
Handling calcium signaling: Arabidopsis CaMs and CMLs
The Arabidopsis genome harbors seven calmodulin (CAM) and 50 CAM-like (CML) genes that encode potential calcium sensors. The CAMs encode only four protein isoforms. Selective pressure to maintain multiple CAMs indicates nonredundancy. Sequence divergence, even in the EF hand calcium-binding motif, exists among the CMLs and, therefore, divergent functions are likely to have evolved. Expression data recently available from Massively Parallel Signature Sequencing and Genevestigator compilation of microarrays are reviewed. The seven Arabidopsis CAMs are highly and relatively uniformly expressed. Differential expression is evident among the distinct CMLs over developmental stages, in various organs and in response to many different stimuli. In spite of the potential importance in mediating plant calcium signaling, the physiological functions of the Arabidopsis CaMs and CMLs remain largely unknown.
- Rice University United States
Sequence Homology, Amino Acid, Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Protein Structure, Secondary, Calmodulin, Protein Isoforms, Amino Acid Sequence, Calcium Signaling, Sequence Alignment, Conserved Sequence, Genome, Plant
Sequence Homology, Amino Acid, Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Protein Structure, Secondary, Calmodulin, Protein Isoforms, Amino Acid Sequence, Calcium Signaling, Sequence Alignment, Conserved Sequence, Genome, Plant
63 Research products, page 1 of 7
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).448 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
