Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Pharmacology
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Anti‐ataxic effects of TRH and its analogue, TA‐0910, in Rolling mouse Nagoya by metabolic normalization of the ventral tegmental area

Authors: Kiyoshi Kinoshita; Hidetoshi Asai; Yumi Watanabe; Yuzo Matsuoka; Michio Yamamura;

Anti‐ataxic effects of TRH and its analogue, TA‐0910, in Rolling mouse Nagoya by metabolic normalization of the ventral tegmental area

Abstract

1. The mechanism of the anti-ataxic action of thyrotropin-releasing hormone (TRH) and its analogue. TA-0910, in the Rolling mouse Nagoya (RMN), an ataxic mutant mouse, has been investigated. 2. TRH (30 mg kg-1, i.p.) and TA-0910 (3 mg kg-1, i.p.) reduced the fall index (number of falls/spontaneous motor activity), an index of ataxia, 10-30 and 10-60 min after administration, respectively. 3. Relative local cerebral glucose utilization (LCGU) in the cerebellum and ventral tegmental area (VTA) of the rolling mouse was significantly smaller than that in normal animals. TRH (30 mg kg-1, i.p.) and TA-0910 (3 mg kg-1, i.p.) increased the relative LCGU value of the VTA but not of the cerebellum in rolling mice to the level of normal animals. 4. These results suggest that the ataxia of the rolling mouse may be due to dysfunction of the cerebellum and VTA, and that amelioration by TRH and TA-0910 could result from metabolic normalization of the VTA.

Keywords

Male, Mice, Mice, Neurologic Mutants, Glucose, Ventral Tegmental Area, Animals, Ataxia, Motor Activity, Energy Metabolism, Thyrotropin-Releasing Hormone

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Top 10%
Top 10%
bronze